
O'Reilly Open Source Convention 2001

Programming
with

Net::LDAP

Graham Barr
<gbarr@pobox.com>

Slide 2

What is a directory ?
" Specialized database

� Structured

� Distributed

� Typed information
� Text strings
� JPEG pictures
� X.509 certificates

O'Reilly Open Source Convention 2001

Slide 3

X.500
" X.500 was the first standard directory

" Developed by the ITU/ISO groups

� work began as early as 1979

" Well thought out design containing many good ideas

" Very complex

" Required powerful computers for its time

" Defines things like inter-server communications, access controls

Slide 4

LDAP
" Developed to overcome the complexities and heavyweightness

of X.500 DAP

" LDAP is a protocol, many early implementations were just
gateways to X.500 directories

" Designed to provide 90% of the X.500 functionality

" Most X.500 products now come with an LDAP gateway

" LDAP working groups are working to reproduce all other X.500
functionality via extensions

O'Reilly Open Source Convention 2001

Slide 5

Structure
" The Directory Information Tree (DIT) is made up of objects

called entries

" Each entry is composed of attributes which contain the
information recorded about each object

" Entries are organized into a tree structure

" Each entry is uniquely identified by a Distinguished Name (DN)

" The DN of an entry is defined by the entry's position within the
tree structure

Slide 6

Distinguished Names
" A DN is made up of one or more Relative Distinguished Names

(RDN)

" Each RDN is separated by a comma

� LDAP version 2 allowed a semi-colon

" Example
 CN=Road Runner, OU=bird, DC=cartoon, DC=com

� The RDN's are
 CN=Road Runner

OU=bird
DC=cartoon
DC=com

O'Reilly Open Source Convention 2001

Slide 7

Structure Example
DC=com

OU=coyoteOU=bird

CN=Road Runner CN=Tweety

CN=Road Runner, OU=bird, DC=cartoon, DC=com

DC=cartoon

Slide 8

Entry Attributes
" The attributes an entry must or may have is defined by either

� Content rules on a per-server basis

� objectClass attribute and a schema on the server

" The objectClass attribute is a multi-valued attribute

" Each objectClass defines a list of attributes that the entry must or
may have

O'Reilly Open Source Convention 2001

Slide 9

Attributes
" Attributes are defined in the server schema

" Properties that can be defined are

� Single or Multi-valued

� Types of searches that can be performed on them

� Type of data stored in them

� Minimum length of avaliable storage

� Alias names

� Description

Slide 10

Attribute schema example
 (2.5.4.41

NAME 'name'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})

(2.5.4.4
NAME ('sn' $ 'surname')
SUP name)

O'Reilly Open Source Convention 2001

Slide 11

objectClass schema example
 (2.5.6.6 NAME 'person' SUP top STRUCTURAL

 MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $
 description))

(2.16.840.1.113730.3.2.2
 NAME 'inetOrgPerson'
 DESC 'RFC2798: Internet Organizational Person'
 SUP organizationalPerson
 STRUCTURAL
 MAY (audio $ businessCategory $ carLicense $
 departmentNumber $ displayName $
 employeeNumber $ employeeType $ givenName $
 homePhone $ homePostalAddress $ initials $
 jpegPhoto $ labeledURI $ mail $ manager $
 mobile $ o $ pager $ photo $ roomNumber $
 secretary $ uid $ userCertificate $
 x500uniqueIdentifier $ preferredLanguage $
 userSMIMECertificate $ userPKCS12))

Slide 12

Access Control
" There are various levels of access control

� The directory manager has access to everything

� Users may be able to modify their own entry

� Attributes may have permissions on them

O'Reilly Open Source Convention 2001

Slide 13

Directory Uses
" A directory can be used in may ways

� Employee database

� Equipment inventory

� List or groups
� Email list
� Organizational groups

� NIS replacement

� Software distribution

Slide 14

Connecting
" Connection is performed as part of the object constructor
 $ldap = Net::LDAP->new($hostname);

" Options can be passed after the hostname
 $ldap = Net::LDAP->new($hostname,

 port => $port, # default: 389
 debug => 3, # default: 0
 timeout => 60, # default: 120
 version => 3 # default: 2
);

O'Reilly Open Source Convention 2001

Slide 15

Authentication
" Referred to a bind-ing

" LDAP supports several methods

� Anonymous

� Simple

� SASL

Slide 16

Anonymous Authentication
" Supported in both version 2 and 3
 $r = $ldap->bind;

" Not required in version 3, but...
 $r = $ldap->bind(version => 3);

O'Reilly Open Source Convention 2001

Slide 17

Simple Authentication
" Supported in both version 2 and 3
 $r = $ldap->bind($DN, password => $pw);

" This method of authentication passes your password in CLEAR
text over the network

Slide 18

SASL Authentication
" SASL is a framework for providing challenge-response

authentication

" Requires version 3 server
 use Authen::SASL;

$sasl = Authen::SASL->new('CRAM-MD5'
 password => $password
);

$r = $ldap->bind($DN,
 sasl => $sasl,
 version => 3
);

O'Reilly Open Source Convention 2001

Slide 19

Return Values
" Most methods in Net::LDAP return an object, this object

provides methods to obtain the results of the operation that was
performed

" A result code is returned by the method ->code

" An error message is returned by the method ->error

" In most cases a success gives a result code of zero
 warn $r->error if $r->code != LDAP_SUCCESS;

Slide 20

Searching
" To perform a search there are three basic things you must know.

� Search base
� The name of a DN within the directory where the search will begin

� Scope
� How to perform the search

� Filter
� The criteria an entry must match to be returned

O'Reilly Open Source Convention 2001

Slide 21

" LDAP servers support three different scopes for searching

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

Base One Subtree

Scope

Slide 22

Filter
" A filter is the criteria that an entry must match to be returned

" Boolean expression of assertions on the attributes of the entry

� Examples
 (&(ou=bird)(cn=*Runner))

(objectClass=Person)

(&(objectClass=ipService)
 (cn=ldap)(ipServiceProtocol=tcp))

O'Reilly Open Source Convention 2001

Slide 23

Basic Filter Syntax
" LDAP filters use a prefix syntax, described in RFC2254

� Equality, existance and sub-string
 (cn=Road Runner)

(cn=*)
(cn=Road*)
(cn=*Runner)
(cn=R*R*r)

� Relational
 (age>=18)

(age<=16)

� Approximate
 (weight~=180)

Slide 24

Complex Filters
" Filters may be combined using simple boolean logic

� And
 (&(ou=bird)(cn=Road Runner))

(&(objectClass=ipService)
 (cn=ldap)(ipServiceProtocol=tcp))

� Or
 (|(cn=Tweety)(cn=Road Runner))

� Not
 (!(cn=Tweety))

O'Reilly Open Source Convention 2001

Slide 25

Extensible Filters
" Extensible filters allow us to change the way a match is

performed

" Change how value comparison is done
 (cn:2.5.13.5:=Road Runner)

 (cn:caseExactMatch:=Road Runner)

" Filters only match the attributes of an entry, not the DN
components, unless specified

 (ou:dn:=bird)

(ou:dn:caseIgnoreMatch:=coyote)

Slide 26

Performing a search

$r = $ldap->search(
base => 'dc=cartoon,dc=com',
scope => 'subtree',
filter => '(cn=Road Runner)'

);

die $r->error if $r->code;

" The result object also contains the matching entries
 foreach my $entry ($r->entries) {

 process_entry($entry);
}

O'Reilly Open Source Convention 2001

Slide 27

The Entry object
" Used for both creating new entries and in retrieval of existing

objects

� dn
� Returns the DN for the entry

$DN = $entry->dn;

� exists
� Test if an attribute exists within the entry

do_something() if $entry->exists('cn');

Slide 28

The Entry object - cont.
� get_value

� Obtain the value for an attribute in the entry

$value = $entry->get_value('cn');

� For multi-valued attributes get_value will return the first value in a
scalar context and all of them in a list context

$first = $entry->get_value('objectClass');

@values = $entry->get_value('objectClass');

$values = $entry->get_value('objectClass',
asref => 1);

O'Reilly Open Source Convention 2001

Slide 29

The Entry object - cont.
� attributes

� Return a list of attribute names that the entry contains

@attrs = $entry->attributes;

� NOTE: Attribute names should be treated as case-insensetive

Slide 30

Displaying an entry
" If you know that all values in your entry are printable, the

following could be used to display the entry contents
 sub display_entry {

 my $entry = shift;

 my @attrs = $entry->attributes;

 foreach my $attr (@attrs) {
 my @value = $entry->get_value($attr);

 foreach my $value (@value) {
 print "$attr: $value\n";
 }
 }
}

O'Reilly Open Source Convention 2001

Slide 31

Controlling what's returned
" Obtaining just attribute names

� By default an LDAP server will return the attributes and their
values for each entry

� Asking for only the types, the server will return the same entries
as before, but the value for each attribute will be an empty list

 $r = $ldap->search(
base => 'dc=cartoon,dc=com',
filter => '(cn=Road*)',
typesonly => 1

);

Slide 32

Controlling what's returned
" Which attributes are returned depend on your permissions. You

can override this by giving a list of attributes
 $r = $ldap->search(

base => 'dc=cartoon, dc=com',
filter => '(cn=Road*)'
attrs => [qw(cn)]

);

" This can be combined with types only to determine if entries
have certain attributes

O'Reilly Open Source Convention 2001

Slide 33

Referrals
" A referral is returned by the server when the whole request

needs to be resent to a different server

" A referral can be returned in response to any operation, except
unbind and abandon

" Detected by a result code of LDAP_REFERRAL
 $r = $ldap->search(...);

@ref = $r->referrals if $r->code == LDAP_REFERRAL;

" Each referral is an LDAP URL

" Net::LDAP does not provide the option to automatically follow
referrals

Slide 34

References
" A reference is returned by the server when part of the request

must be sent to a different server

" A reference can only be returned by a search operation

" There is no result code to detect these
 $r = $ldap->search(...);

@ref = $r->references;

" Each reference is an LDAP URL

" Net::LDAP does not provide the option to automatically follow
references

O'Reilly Open Source Convention 2001

Slide 35

Adding
" There are four different ways that Net::LDAP supports adding

new entries into a directory

� The add method

� The Entry class

� LDIF
� Same as adding with the Entry class, except the Entry is read from a

file via the LDIF module

� DSML
� Same as adding with the Entry class, except the Entry is read from a

file via the DSML module

Slide 36

Adding – the add method
" Data structure of entry is passed directly to the add method
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$r = $ldap->add($DN,
attrs => [

cn => 'Road Runner',
objectClass => 'cartoonCharacter',
food => 'Bird Seed'

]
);

O'Reilly Open Source Convention 2001

Slide 37

Adding – the Entry class
" An Entry is built and passed to the add method
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$e = Net::LDAP::Entry->new($DN);

$e->add(cn => 'Road Runner');

$e->add(
objectClass => 'cartoonCharacter',
food => 'Bird Seed'

);

$r = $ldap->add($e);

Slide 38

Deleting
" To delete an Entry you need to know the DN of the entry to be

deleted
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$ldap->delete($DN);

" Alternatively, like many Net::LDAP methods, an Entry can be
passed where a DN is expected

 $entry = find_entry_to_delete();
$ldap->delete($entry);

O'Reilly Open Source Convention 2001

Slide 39

Modifying
" The modify operation has three sub-operations

� Add
� Add new attributes
� Add values to existing multi-valued attributes

� Delete
� Delete whole attributes
� Delete values from within existing attributes

� Replace
� Replace existing attributes, or add if necessary

Slide 40

Modify – add
" To add a new attribute to an entry, or value to an existing

attribute
 $r = $ldap->modify($DN,

add => { mail => 'rr@cartoon.com' }
);

" An error will be returned if

� If the attribute exists and is not multi-valued

� If the attribute exists and is multi-valued and the value already
exists

� The schema does not allow the attribute to be added

O'Reilly Open Source Convention 2001

Slide 41

Modify – delete
" To delete whole attributes
 $r = $ldap->modify($DN,

delete => ['mail']
);

" Or, specific values from an attribute
 $r = $ldap->modify($DN,

delete => { mail => ['tweety@cartoon.com'] }
);

" If deleting specific values from an attribute leaves the attribute
with an empty list, the attribute is deleted

" If the given attribute does not exist, the error code
LDAP_NO_SUCH_ATTRIBUTE is returned

Slide 42

Modify – replace
" Replace allows you to replace whole attributes

� Single value
 $r = $ldap->modify($DN,

replace => { mail => 'bird@cartoon.com' }
);

� Multi-valued
 $r = $ldap->modify($DN,

replace => {
mail => ['bird@cartoon.com','bird@acme.com']

}
);

� Delete
 $r = $ldap->modify($DN, replace => { mail => [] });

O'Reilly Open Source Convention 2001

Slide 43

Renaming an Entry
" moddn allows an entry to be moved within the tree
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$r = $ldap->moddn($DN,
newrdn => 'cn=Lunch'

);

" An entry can also be moved to another branch of the tree
 $DN = 'cn=Wile E. Coyote, ou=coyote, dc=cartoon, dc=com';

$r = $ldap->moddn($DN,
newrdn => 'cn=Isac Newton',
newsuperior => 'ou=genius, dc=cartoon, dc=com'

);

" An error will be returned if the new entry already exists

Slide 44

Comparing
" Compare allows the value of an attribute to be compared with a

value following the comparison rules specified in the directory
schema

 $DN = 'cn=Thieves Hideout, ou=cave, dc=cartoon, dc=com';
$r = $ldap->compare($DN,

attr => 'userPassword',
value => 'opensesame'

);

" On success $r->code will be either LDAP_COMPARE_TRUE
or LDAP_COMPARE_FALSE

" Some systems impose access rules on some attributes that allow
them to be compared but not read, eg userPassword

O'Reilly Open Source Convention 2001

Slide 45

Groups
" In a directory a group is implemented as an entry with a multi-

valued attribute

" This attribute is normally called member

" The contents of the attribute are the DNs of the members
 $DN = "cn=Animaniacs, ou=Groups, dc=cartoon, dc=com";

$r = $ldap->modify($DN,
add => {
 member => [

"cn=Wakko, ou=character, dc=cartoon, dc=com",
"cn=Yakko, ou=character, dc=cartoon, dc=com",
"cn=Dot, ou=character, dc=cartoon, dc=com"

]
]

);

Slide 46

LDIF
" LDIF is a text format used to represent entries within a directory
 dn: cn=Road Runner, ou=bird, dc=cartoon, dc=com

objectClass: cartoonCharacter
cn: Road Runner
food: Bird Seed

" It can also be used as a command language to manipulate
existing directory entries

 dn: cn=Road Runner, ou=bird, dc=cartoon, dc=com
changetype: modify
replace: mail
mail: road.runner@cartoon.com

O'Reilly Open Source Convention 2001

Slide 47

Reading LDIF
" LDIF files can be read using the Net::LDAP::LDIF class
 $ldif = Net::LDAP::LDIF->new($filename, "r");

while ($entry = $ldif->read_entry) {
$r = $ldap->add($entry);
warn $entry->dn,": ",$r->error if $r->code;

}
warn "Error reading $filename" unless $ldif->eof;

" The $filename passed to ->new may alternatively be a file
handle

 $ldif = Net::LDAP::LDIF->new(*STDIN, "r");

Slide 48

Writing LDIF
" The same class can be used to write LDIF
 $ldif = Net::LDAP::LDIF->new($filename, "w");

$ldif->write_entry($entry);

" Appending can be done by passing "a" instead of "w"

O'Reilly Open Source Convention 2001

Slide 49

Controls
" Version 3 made the protocol extendable by adding controls

" Most Net::LDAP methods accept a list of controls. This is
passed as an array reference using the control named
parameter

" Net::LDAP currently implements

� Paged Search Results

� Sorted Search Results

� Virtual List View

� Proxy Authentication

Slide 50

Paged Search Results
" Allows the results of a search to be returned in blocks instead of

all at once
 $page = Net::LDAP::Control::Paged->new(size => 5);

@args = (
base => "DC=cartoon, DC=com",
scope => "subtree",
filter => "(cn=road*)",
control => [$page]

);
while(1) {

$r = $ldap->search(@args);
$r->code and last;
$ctrl = $mesg->control(LDAP_CONTROL_PAGED)

or last;
$cookie = $ctrl->cookie or last;
$page->cookie($cookie);
process_entries($r) or last;

}

O'Reilly Open Source Convention 2001

Slide 51

Paged Search Results – cont.
 # If we terminated early tell the server we are finished

if ($cookie) {
$page->cookie($cookie);
$page->size(0);
$ldap->search(@args);

}

Slide 52

Sorted Search Results
" Controls the order of the entries returned from a search
 $sort = Net::LDAP::Control::Sort->new(

order => "cn -phone"
);

$r = $ldap->search(@args, control => [$sort]);

($ctrl) = $mesg->control(LDAP_CONTROL_SORTRESULT);

print "Results are sorted\n"
if $ctrl and !$ctrl->result;

@entries = $r->entries;

O'Reilly Open Source Convention 2001

Slide 53

Virtual List Views
" Controls a search to only return a subset of the matching entries

using a moving window

" A sort control must be passed with the VLV control
 $vlv = Net::LDAP::Control::VLV->new(

 offset => 1, # Target entry is the first
 before => 0, # No entries from before target entry
 after => 19, # 19 entries after target entry
);

$sort = Net::LDAP::Control::Sort->new(sort => 'cn');

Slide 54

Virtual List View – cont
 @args = (

base => "dc=cartoon, dc=com",
scope => "subtree",
filter => "(objectClass=*)",
control => [$vlv, $sort]

);

$r = $ldap->search(@args);
($ctrl) = $mesg->control(LDAP_CONTROL_VLVRESPONSE)

or die;
$vlv->response($ctrl);

$vlv->end;
$r = $ldap->search(@args);
($ctrl) = $mesg->control(LDAP_CONTROL_VLVRESPONSE)

or die;
$vlv->response($ctrl);

O'Reilly Open Source Convention 2001

Slide 55

Virtual List View – cont
" Other VLV methods include

� Move to the start of the list
 $vlv->start;

� Scroll through the list
 $vlv->scroll_page(1);

$vlv->scroll_page(-1);

� Move to a particular entry
 $vlv->assert("B");

� Query
 $offset = $vlv->offset;

$content = $vlv->content;
$before = $vlv->before;
$after = $vlv->after;

Slide 56

Proxy Authentication
" Allows a bound client to assume the identity of another entity

" Requires access control permission from the assumed identity
 $proxyDN =

 "cn=Friz Freleng, ou=animator, dc=cartoon, dc=com";

 $ctrl = Net::LDAP::Control::ProxyAuth->new(
proxyDN => $proxyDN

);

$DN = "cn=Sylvester, ou=cat, dc=cartoon, dc=com";

 $r = $ldap->modify($DN,
delete => { food => 'birds' }

);

O'Reilly Open Source Convention 2001

Slide 57

Schema
" The schema for a directory is stored in an entry within the

directory

" Net::LDAP provides a single method for obtaining the directory
schema

 $schema = $ldap->schema;

" The result is a Net::LDAP::Schema object

" Net::LDAP::Schema provides an API for querying the content
of the schema

" Net::LDAP does not provide a method to modify schema

Slide 58

Handling Errors
" The Message object returned by most methods contains the

status of the operation performed

" The code method will return a status code. For most operations a
success will be represented as a zero in this field

� Net::LDAP::Constant exports LDAP_SUCCESS as zero

" The error method will return a short error message. This may be
either a message actually returned by the server, or a default
message that corresponds to the code returned by the server

O'Reilly Open Source Convention 2001

Slide 59

Handling Errors – cont
" In most simple cases the result code should be

LDAP_SUCCESS, or in the case of compare
LDAP_COMPARE_FALSE or LDAP_COMPARE_TRUE

" Net::LDAP can be told to call a subroutine whenever an
unexpected result is returned

" The following will cause Net::LDAP to die when an unexpected
result is returned

 $ldap = Net::LDAP->new($server, onerror => 'die');

Slide 60

Handling Errors – cont
" Other handlers are

� 'warn' – Net::LDAP will call warn with an error messages, but
will continue as normal

� 'undef' – Net::LDAP will call warn with an error if -w is in
effect. The method called will then return undef instead of the
usual message object

" onerror may also be passed a sub reference. This sub will be
called with the message object. The return value from this sub is
what will be returned by the method that was called

O'Reilly Open Source Convention 2001

Slide 61

Net::LDAP::Util
" The Net::LDAP::Util module contains many utility functions

� ldap_error_name - Given an error code it will return the name
associated with that code

 warn ldap_error_name(0); # "LDAP_SUCCESS"

� ldap_error_message - Given an error code it will return a short
error message

 warn ldap_error_message(0); # "Success"

� ldap_error_text - Given an error code it will return the text from
the Net::LDAP::Constant POD for the given error

Slide 62

Net::LDAP::Util
" Distinguished Names can be represented in many forms, so

comparing two DNs is not as simple as using eq. For this reason
Net::LDAP::Util provides canonical_dn

" canonical_dn performs the following actions on a DN

� Downcase any hexadecimal codes

� Upcase all type names

� Remove the letters OID from any OID

� Escape all special characters

� Escapes all leading and trailing spaces

� Orders the parts within any multi-part RDN

O'Reilly Open Source Convention 2001

Slide 63

Using callbacks
" LDAP returns results to the client in multiple packets. Each

packet will contain a single entry, a reference or a result code

" Net::LDAP accumulates all packets for a transaction before a
methods returns

" Callbacks allow the entries to be processed as they arrive,
instead of waiting for the completion

" This can result in less memory consumption and also faster
processing

Slide 64

Using callbacks – cont
 $r = $ldap->search($DN,

filter => '(objectClass=*)',
callback => \&process

);

" process will be called for each packet received

" The first argument passed will be the message object

" If the packet was an entry, then there will be a second argument,
which will be a Net::LDAP::Entry object

" If the packet was a reference, there will be a second argument,
which will be a Net::LDAP::Reference object

O'Reilly Open Source Convention 2001

Slide 65

Using callbacks – cont
 sub process {

 my ($r, $obj) = @_;

 if (!$obj) {
 print $r->error,"\n";
 }
 elsif ($obj->isa('Net::LDAP::Entry')) {
 print $obj->dn,"\n";
 $r->pop_entry;
 }
 else {
 foreach my $ref ($obj->references) {
 print $ref,"\n";
 }
 }
}

Slide 66

LDAP and XML
" Directory Service Markup Language (DSML) is the XML

standard for representing directory service information in XML

" DSML is still very new

" DSML cannot be used as a command language like LDIF

O'Reilly Open Source Convention 2001

Slide 67

Client Software
" perl-ldap

� http://perl-ldap.sourceforge.net/

" PerLDAP

� http://www.mozilla.org/directory/perldap.html

" Netscape

� http://www.iplanet.com/

" Sun JNDI

� http://www.java.sun.com/jndi/

Slide 68

Open Source Servers
" OpenLDAP

� http://www.openldap.org/

" JavaLDAP

� http://javaldap.sourceforge.net/

O'Reilly Open Source Convention 2001

Slide 69

Commercial Servers
" Iplanet

� http://www.iplanet.com/

" Messaging Direct

� http://www.messagingdirect.com/

" Nexor

� http://www.nexor.com/

" Critical Path

� http://www.cp.net/

Slide 70

perl-ldap resources
" Homepage

� http://perl-ldap.sourceforge.net/

" Online documentation

� http://perl-ldap.sourceforge.net/doc/

" FAQ

� http://perl-ldap.sourceforge.net/FAQ.html

" Mailing list

� perl-ldap-dev@lists.sourceforge.net

