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What is a directory ? 
" Specialized database

� Structured

� Distributed

� Typed information
� Text strings
� JPEG pictures
� X.509 certificates
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X.500
" X.500 was the first standard directory

" Developed by the ITU/ISO groups

� work began as early as 1979

" Well thought out design containing many good ideas

" Very complex

" Required powerful computers for its time

" Defines things like inter-server communications, access controls 
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LDAP 
" Developed to overcome the complexities and heavyweightness 

of X.500 DAP

" LDAP is a protocol, many early implementations were just 
gateways to X.500 directories

" Designed to provide 90% of the X.500 functionality

" Most X.500 products now come with an LDAP gateway

" LDAP working groups are working to reproduce all other X.500 
functionality via extensions



O'Reilly Open Source Convention 2001

Slide 5

Structure
" The Directory Information Tree (DIT) is made up of objects 

called entries

" Each entry is composed of attributes which contain the 
information recorded about each object

" Entries are organized into a tree structure

" Each entry is uniquely identified by a Distinguished Name (DN)

" The DN of an entry is defined by the entry's position within the 
tree structure
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Distinguished Names
" A DN is made up of one or more Relative Distinguished Names 

(RDN)

" Each RDN is separated by a comma

� LDAP version 2 allowed a semi-colon

" Example
  CN=Road Runner, OU=bird, DC=cartoon, DC=com

� The RDN's are
  CN=Road Runner

OU=bird
DC=cartoon
DC=com
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Structure Example
DC=com

OU=coyoteOU=bird

CN=Road Runner CN=Tweety

CN=Road Runner, OU=bird, DC=cartoon, DC=com

DC=cartoon
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Entry Attributes
" The attributes an entry must or may have is defined by either

� Content rules on a per-server basis

� objectClass attribute and a schema on the server

" The objectClass attribute is a multi-valued attribute

" Each objectClass defines a list of attributes that the entry must or 
may have
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Attributes
" Attributes are defined in the server schema

" Properties that can be defined are

� Single or Multi-valued

� Types of searches that can be performed on them

� Type of data stored in them

� Minimum length of avaliable storage

� Alias names

� Description
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Attribute schema example
 ( 2.5.4.41 

NAME 'name'
      EQUALITY caseIgnoreMatch
      SUBSTR caseIgnoreSubstringsMatch
      SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768} ) 

( 2.5.4.4
NAME ( 'sn' $ 'surname' )
SUP name )
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objectClass schema example
 ( 2.5.6.6 NAME 'person' SUP top STRUCTURAL

  MUST ( sn $ cn )
  MAY ( userPassword $ telephoneNumber $ seeAlso $ 
                    description ) )

( 2.16.840.1.113730.3.2.2
  NAME 'inetOrgPerson'
  DESC 'RFC2798: Internet Organizational Person'
  SUP organizationalPerson
  STRUCTURAL
  MAY ( audio $ businessCategory $ carLicense $ 
        departmentNumber $ displayName $ 
        employeeNumber $ employeeType $ givenName $
        homePhone $ homePostalAddress $ initials $ 
        jpegPhoto $ labeledURI $ mail $ manager $ 
        mobile $ o $ pager $ photo $ roomNumber $ 
        secretary $ uid $ userCertificate $
        x500uniqueIdentifier $ preferredLanguage $
        userSMIMECertificate $ userPKCS12 )  )
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Access Control
" There are various levels of access control

� The directory manager has access to everything

� Users may be able to modify their own entry

� Attributes may have permissions on them
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Directory Uses
" A directory can be used in may ways

� Employee database

� Equipment inventory

� List or groups
� Email list
� Organizational groups

� NIS replacement

� Software distribution
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Connecting
" Connection is performed as part of the object constructor
 $ldap = Net::LDAP->new($hostname);

" Options can be passed after the hostname
 $ldap = Net::LDAP->new($hostname,

          port    => $port, # default: 389
          debug   => 3,     # default: 0
          timeout => 60,    # default: 120
          version => 3      # default: 2
        );
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Authentication
" Referred to a bind-ing

" LDAP supports several methods

� Anonymous

� Simple

� SASL
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Anonymous Authentication
" Supported in both version 2 and 3
 $r = $ldap->bind;

" Not required in version 3, but...
 $r = $ldap->bind(version => 3);
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Simple Authentication
" Supported in both version 2 and 3
 $r = $ldap->bind($DN, password => $pw);

" This method of authentication passes your password in CLEAR 
text over the network
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SASL Authentication
" SASL is a framework for providing challenge-response 

authentication

" Requires version 3 server
 use Authen::SASL;

$sasl = Authen::SASL->new( 'CRAM-MD5'
    password => $password
  );

$r = $ldap->bind($DN,
       sasl    => $sasl,
       version => 3
     );
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Return Values
" Most methods in Net::LDAP return an object, this object 

provides methods to obtain the results of the operation that was 
performed

" A result code is returned by the method ->code

" An error message is returned by the method ->error

" In most cases a success gives a result code of zero
 warn $r->error if $r->code != LDAP_SUCCESS;
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Searching
" To perform a search there are three basic things you must know.

� Search base
� The name of a DN within the directory where the search will begin

� Scope
� How to perform the search

� Filter
� The criteria an entry must match to be returned
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" LDAP servers support three different scopes for searching

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

dc=cartoon,dc=com

ou=bird

ou=coyote

cn=Road Runner

cn=Tweety

Base One Subtree

Scope
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Filter
" A filter is the criteria that an entry must match to be returned

" Boolean expression of assertions on the attributes of the entry

� Examples
       (&(ou=bird)(cn=*Runner))

(objectClass=Person)

(&(objectClass=ipService)
  (cn=ldap)(ipServiceProtocol=tcp))
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Basic Filter Syntax
" LDAP filters use a prefix syntax, described in RFC2254

� Equality, existance and sub-string
  (cn=Road Runner)

(cn=*)
(cn=Road*)
(cn=*Runner)
(cn=R*R*r)

� Relational
  (age>=18)

(age<=16)

� Approximate
  (weight~=180)
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Complex Filters
" Filters may be combined using simple boolean logic

� And
  (&(ou=bird)(cn=Road Runner))

(&(objectClass=ipService)
  (cn=ldap)(ipServiceProtocol=tcp))

� Or
  (|(cn=Tweety)(cn=Road Runner))

� Not
  (!(cn=Tweety))
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Extensible Filters
" Extensible filters allow us to change the way a match is 

performed

" Change how value comparison is done
 (cn:2.5.13.5:=Road Runner)

 (cn:caseExactMatch:=Road Runner)

" Filters only match the attributes of an entry, not the DN 
components, unless specified

 (ou:dn:=bird)

(ou:dn:caseIgnoreMatch:=coyote)
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Performing a search
 

$r = $ldap->search(
base   => 'dc=cartoon,dc=com',
scope  => 'subtree',
filter => '(cn=Road Runner)'

);

die $r->error if $r->code;

" The result object also contains the matching entries
 foreach my $entry ($r->entries) {

  process_entry( $entry );
}
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The Entry object
" Used for both creating new entries and in retrieval of existing 

objects

� dn
� Returns the DN for the entry

 

$DN = $entry->dn;

� exists
� Test if an attribute exists within the entry

 

do_something() if $entry->exists('cn');
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The Entry object - cont.
� get_value

� Obtain the value for an attribute in the entry
 

$value = $entry->get_value('cn');

� For multi-valued attributes get_value will return the first value in a 
scalar context and all of them in a list context

 

$first  = $entry->get_value('objectClass');

@values = $entry->get_value('objectClass');

$values = $entry->get_value('objectClass',
asref => 1);
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The Entry object - cont.
� attributes

� Return a list of attribute names that the entry contains
 

@attrs = $entry->attributes;

� NOTE: Attribute names should be treated as case-insensetive
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Displaying an entry
" If you know that all values in your entry are printable, the 

following could be used to display the entry contents
 sub display_entry {

  my $entry = shift;

  my @attrs = $entry->attributes;

  foreach my $attr (@attrs) {
    my @value = $entry->get_value( $attr );

    foreach my $value (@value) {
      print "$attr: $value\n";
    }
  }
}
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Controlling what's returned
" Obtaining just attribute names

� By default an LDAP server will return the attributes and their 
values for each entry

� Asking for only the types, the server will return the same entries 
as before, but the value for each attribute will be an empty list

  $r = $ldap->search(
base      => 'dc=cartoon,dc=com',
filter    => '(cn=Road*)',
typesonly => 1

);
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Controlling what's returned
" Which attributes are returned depend on your permissions. You 

can override this by giving a list of attributes
 $r = $ldap->search(

base   => 'dc=cartoon, dc=com',
filter => '(cn=Road*)'
attrs  => [qw(cn)]

);

" This can be combined with types only to determine if entries 
have certain attributes



O'Reilly Open Source Convention 2001

Slide 33

Referrals
" A referral is returned by the server when the whole request 

needs to be resent to a different server

" A referral can be returned in response to any operation, except 
unbind and abandon

" Detected by a result code of LDAP_REFERRAL
 $r = $ldap->search( ... );

@ref = $r->referrals if $r->code == LDAP_REFERRAL;

" Each referral is an LDAP URL

" Net::LDAP does not provide the option to automatically follow 
referrals
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References
" A reference is returned by the server when part of the request 

must be sent to a different server

" A reference can only be returned by a search operation

" There is no result code to detect these
 $r = $ldap->search( ... );

@ref = $r->references;

" Each reference is an LDAP URL

" Net::LDAP does not provide the option to automatically follow 
references
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Adding
" There are four different ways that Net::LDAP supports adding 

new entries into a directory

� The add method

� The Entry class

� LDIF
� Same as adding with the Entry class, except the Entry is read from a 

file via the LDIF module

� DSML
� Same as adding with the Entry class, except the Entry is read from a 

file via the DSML module
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Adding – the add method
" Data structure of entry is passed directly to the add method
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$r = $ldap->add( $DN,
attrs => [

cn => 'Road Runner',
objectClass => 'cartoonCharacter',
food => 'Bird Seed'

]
);
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Adding – the Entry class
" An Entry is built and passed to the add method
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$e = Net::LDAP::Entry->new( $DN );

$e->add( cn => 'Road Runner' );

$e->add(
objectClass => 'cartoonCharacter',
food => 'Bird Seed'

);

$r = $ldap->add( $e );
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Deleting
" To delete an Entry you need to know the DN of the entry to be 

deleted
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$ldap->delete( $DN );

" Alternatively, like many Net::LDAP methods, an Entry can be 
passed where a DN is expected

 $entry = find_entry_to_delete();
$ldap->delete( $entry );
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Modifying
" The modify operation has three sub-operations

� Add
� Add new attributes
� Add values to existing multi-valued attributes

� Delete
� Delete whole attributes
� Delete values from within existing attributes

� Replace
� Replace existing attributes, or add if necessary
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Modify – add
" To add a new attribute to an entry, or value to an existing 

attribute
 $r = $ldap->modify( $DN,

add => { mail => 'rr@cartoon.com' }
);

" An error will be returned if

� If the attribute exists and is not multi-valued

� If the attribute exists and is multi-valued and the value already 
exists

� The schema does not allow the attribute to be added



O'Reilly Open Source Convention 2001

Slide 41

Modify – delete
" To delete whole attributes
 $r = $ldap->modify( $DN, 

delete => [ 'mail' ]
);

" Or, specific values from an attribute
 $r = $ldap->modify( $DN,

delete => { mail => [ 'tweety@cartoon.com' ] }
);

" If deleting specific values from an attribute leaves the attribute 
with an empty list, the attribute is deleted

" If the given attribute does not exist, the error code 
LDAP_NO_SUCH_ATTRIBUTE is returned
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Modify – replace
" Replace allows you to replace whole attributes

� Single value
 $r = $ldap->modify( $DN,

replace => { mail => 'bird@cartoon.com' }
);

� Multi-valued
 $r = $ldap->modify( $DN,

replace => {
mail => ['bird@cartoon.com','bird@acme.com']

}
);

� Delete
 $r = $ldap->modify( $DN, replace => { mail => [] } );
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Renaming an Entry
" moddn allows an entry to be moved within the tree
 $DN = 'cn=Road Runner, ou=bird, dc=cartoon, dc=com';

$r = $ldap->moddn( $DN,
newrdn => 'cn=Lunch'

);

" An entry can also be moved to another branch of the tree
 $DN = 'cn=Wile E. Coyote, ou=coyote, dc=cartoon, dc=com';

$r = $ldap->moddn( $DN,
newrdn      => 'cn=Isac Newton',
newsuperior => 'ou=genius, dc=cartoon, dc=com'

);

" An error will be returned if the new entry already exists
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Comparing
" Compare allows the value of an attribute to be compared with a 

value following the comparison rules specified in the directory 
schema

 $DN = 'cn=Thieves Hideout, ou=cave, dc=cartoon, dc=com';
$r = $ldap->compare( $DN,

attr  => 'userPassword',
value => 'opensesame'

);

" On success $r->code will be either LDAP_COMPARE_TRUE 
or LDAP_COMPARE_FALSE

" Some systems impose access rules on some attributes that allow 
them to be compared but not read, eg userPassword
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Groups
" In a directory a group is implemented as an entry with a multi-

valued attribute

" This attribute is normally called member

" The contents of the attribute are the DNs of the members
 $DN = "cn=Animaniacs, ou=Groups, dc=cartoon, dc=com";

$r = $ldap->modify($DN,
add => {
  member => [

"cn=Wakko, ou=character, dc=cartoon, dc=com",
"cn=Yakko, ou=character, dc=cartoon, dc=com",
"cn=Dot, ou=character, dc=cartoon, dc=com"

  ]
]

);
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LDIF
" LDIF is a text format used to represent entries within a directory
 dn: cn=Road Runner, ou=bird, dc=cartoon, dc=com

objectClass: cartoonCharacter
cn: Road Runner
food: Bird Seed

" It can also be used as a command language to manipulate 
existing directory entries

 dn: cn=Road Runner, ou=bird, dc=cartoon, dc=com
changetype: modify
replace: mail
mail: road.runner@cartoon.com
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Reading LDIF
" LDIF files can be read using the Net::LDAP::LDIF class
 $ldif = Net::LDAP::LDIF->new($filename, "r");

while ($entry = $ldif->read_entry) {
$r = $ldap->add( $entry );
warn $entry->dn,": ",$r->error if $r->code;

}
warn "Error reading $filename" unless $ldif->eof;

" The $filename passed to ->new may alternatively be a file 
handle

 $ldif = Net::LDAP::LDIF->new( \*STDIN, "r");
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Writing LDIF
" The same class can be used to write LDIF
 $ldif = Net::LDAP::LDIF->new( $filename, "w");

$ldif->write_entry( $entry );

" Appending can be done by passing "a" instead of "w"
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Controls
" Version 3 made the protocol extendable by adding controls

" Most Net::LDAP methods accept a list of controls. This is 
passed as an array reference using the control named 
parameter

" Net::LDAP currently implements

� Paged Search Results

� Sorted Search Results

� Virtual List View

� Proxy Authentication
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Paged Search Results
" Allows the results of a search to be returned in blocks instead of 

all at once
 $page = Net::LDAP::Control::Paged->new( size => 5 );

@args = (
base     => "DC=cartoon, DC=com",
scope    => "subtree",
filter   => "(cn=road*)",
control  => [ $page ]

);
while(1) {

$r = $ldap->search( @args );
$r->code and last;
$ctrl = $mesg->control( LDAP_CONTROL_PAGED )

or last;
$cookie = $ctrl->cookie or last;
$page->cookie($cookie);
process_entries( $r ) or last;

}
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Paged Search Results – cont.
 # If we terminated early tell the server we are finished

 

if ($cookie) {
$page->cookie($cookie);
$page->size(0);
$ldap->search( @args );

}
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Sorted Search Results
" Controls the order of the entries returned from a search
 $sort = Net::LDAP::Control::Sort->new(

order => "cn -phone"
);

$r = $ldap->search( @args, control => [ $sort ]);

($ctrl) = $mesg->control( LDAP_CONTROL_SORTRESULT );

print "Results are sorted\n"
if $ctrl and !$ctrl->result;

@entries = $r->entries;
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Virtual List Views
" Controls a search to only return a subset of the matching entries 

using a moving window

" A sort control must be passed with the VLV control
 $vlv  = Net::LDAP::Control::VLV->new(

  offset  => 1,  # Target entry is the first
  before  => 0,  # No entries from before target entry
  after   => 19, # 19 entries after target entry
);

$sort = Net::LDAP::Control::Sort->new( sort => 'cn' );
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Virtual List View – cont
 @args = (

base     => "dc=cartoon, dc=com",
scope    => "subtree",
filter   => "(objectClass=*)",
control  => [ $vlv, $sort ]

);

$r = $ldap->search( @args );
($ctrl)  = $mesg->control( LDAP_CONTROL_VLVRESPONSE )

or die;
$vlv->response( $ctrl );

$vlv->end;
$r = $ldap->search( @args );
($ctrl)  = $mesg->control( LDAP_CONTROL_VLVRESPONSE )

or die;
$vlv->response( $ctrl );
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Virtual List View – cont
" Other VLV methods include

� Move to the start of the list
 $vlv->start;

� Scroll through the list
 $vlv->scroll_page(1);

$vlv->scroll_page(-1);

� Move to a particular entry
 $vlv->assert("B");

� Query
 $offset  = $vlv->offset;

$content = $vlv->content;
$before  = $vlv->before;
$after   = $vlv->after;
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Proxy Authentication
" Allows a bound client to assume the identity of another entity

" Requires access control permission from the assumed identity
 $proxyDN =

    "cn=Friz Freleng, ou=animator, dc=cartoon, dc=com";

 $ctrl = Net::LDAP::Control::ProxyAuth->new(
proxyDN => $proxyDN

);

$DN = "cn=Sylvester, ou=cat, dc=cartoon, dc=com";

 $r = $ldap->modify($DN,
delete => { food => 'birds' }

);
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Schema
" The schema for a directory is stored in an entry within the 

directory

" Net::LDAP provides a single method for obtaining the directory 
schema

 $schema = $ldap->schema;

" The result is a Net::LDAP::Schema object

" Net::LDAP::Schema provides an API for querying the content 
of the schema

" Net::LDAP does not provide a method to modify schema
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Handling Errors
" The Message object returned by most methods contains the 

status of the operation performed

" The code method will return a status code. For most operations a 
success will be represented as a zero in this field

� Net::LDAP::Constant exports LDAP_SUCCESS as zero

" The error method will return a short error message. This may be 
either a message actually returned by the server, or a default 
message that corresponds to the code returned by the server
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Handling Errors – cont
" In most simple cases the result code should be 

LDAP_SUCCESS, or in the case of compare 
LDAP_COMPARE_FALSE or LDAP_COMPARE_TRUE

" Net::LDAP can be told to call a subroutine whenever an 
unexpected result is returned

" The following will cause Net::LDAP to die when an unexpected 
result is returned

 $ldap = Net::LDAP->new($server, onerror => 'die');
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Handling Errors – cont
" Other handlers are

� 'warn' – Net::LDAP will call warn with an error messages, but 
will continue as normal

� 'undef' – Net::LDAP will call warn with an error if -w is in 
effect. The method called will then return undef instead of the 
usual message object

" onerror may also be passed a sub reference. This sub will be 
called with the message object. The return value from this sub is 
what will be returned by the method that was called
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Net::LDAP::Util
" The Net::LDAP::Util module contains many utility functions

� ldap_error_name - Given an error code it will return the name 
associated with that code

  warn ldap_error_name(0); # "LDAP_SUCCESS"

� ldap_error_message - Given an error code it will return a short 
error message

  warn ldap_error_message(0); # "Success"

� ldap_error_text - Given an error code it will return the text from 
the Net::LDAP::Constant POD for the given error
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Net::LDAP::Util
" Distinguished Names can be represented in many forms, so 

comparing two DNs is not as simple as using eq. For this reason 
Net::LDAP::Util provides canonical_dn

" canonical_dn performs the following actions on a DN

� Downcase any hexadecimal codes

� Upcase all type names

� Remove the letters OID from any OID

� Escape all special characters

� Escapes all leading and trailing spaces

� Orders the parts within any multi-part RDN
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Using callbacks
" LDAP returns results to the client in multiple packets. Each 

packet will contain a single entry, a reference or a result code

" Net::LDAP accumulates all packets for a transaction before a 
methods returns

" Callbacks allow the entries to be processed as they arrive, 
instead of waiting for the completion

" This can result in less memory consumption and also faster 
processing
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Using callbacks – cont
 $r = $ldap->search( $DN,

filter   => '(objectClass=*)',
callback => \&process

);

" process will be called for each packet received

" The first argument passed will be the message object

" If the packet was an entry, then there will be a second argument, 
which will be a Net::LDAP::Entry object

" If the packet was a reference, there will be a second argument, 
which will be a Net::LDAP::Reference object
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Using callbacks – cont
 sub process {

  my ($r, $obj) = @_;

  if (!$obj) {
    print $r->error,"\n";
  }
  elsif ($obj->isa('Net::LDAP::Entry')) {
    print $obj->dn,"\n";
    $r->pop_entry;
  }
  else {
    foreach my $ref ($obj->references) {
      print $ref,"\n";
    }
  }
}
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LDAP and XML
" Directory Service Markup Language (DSML) is the XML 

standard for representing directory service information in XML

" DSML is still very new

" DSML cannot be used as a command language like LDIF
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Client Software
" perl-ldap

� http://perl-ldap.sourceforge.net/

" PerLDAP

� http://www.mozilla.org/directory/perldap.html

" Netscape

� http://www.iplanet.com/

" Sun JNDI

� http://www.java.sun.com/jndi/
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Open Source Servers
" OpenLDAP

� http://www.openldap.org/

" JavaLDAP

� http://javaldap.sourceforge.net/
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Commercial Servers
" Iplanet

� http://www.iplanet.com/

" Messaging Direct

� http://www.messagingdirect.com/

" Nexor

� http://www.nexor.com/

" Critical Path

� http://www.cp.net/
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perl-ldap resources
" Homepage

� http://perl-ldap.sourceforge.net/

" Online documentation

� http://perl-ldap.sourceforge.net/doc/

" FAQ

� http://perl-ldap.sourceforge.net/FAQ.html

" Mailing list

� perl-ldap-dev@lists.sourceforge.net


